ND Biosciences

Publications on Protein Engineering Technologies
Related to Huntington’s Disease

  • Reif A, Chiki A, Ricci J, and Lashuel HA. Generation of native, untagged Huntingtin Exon1 monomers and fibrils using a SUMO fusion strategy. Journal of Visualized Experiments2018, 136, doi: 10.3791/5706.
  • DeGuire SM, Ruggeri SM, Fares MF, Cendrowska U,Dietler G, and Lashuel HA. Phosphorylation at S13 and/or S16 strongly inhibits the aggregation of mutant Httex1, regulates its helical conformation and prompts the internalization and nuclear targeting of preformed Httex1aggregates. Journal of Biological Chemistry. 2018, 293(48):18540-18558.
  • Warner J, Ruff K, Tan P, Lemke E, Pappu R and Lashuel HA. Monomeric huntingtin exon 1 has similar overall structural features for wild type and pathological polyglutamine lengths. Journal of the American Chemical Society, 2017, 139(41):14456-14469.
  • Chiki A.,DeGuire SM., Ruggeri SF.,Cendrowska U.,Ansaloni A.,Wang Z.,  Sanfelice D.,Burai R.,Vieweg S.,Pastore A.,Dietler G., and Lashuel HA. Mutant Exon1 huntingtin aggregation is regulated by T3 phosphorylation-induced structural changes and cross-talk between T3 phosphorylation and acetylation at K6. Angewandte Chem. Int. Ed2017, 56(19): 5202-5207.
  • Ansaloni A, Wang ZM, Jeong JS, Ruggeri FS, Dietler G, Lashuel HA. One-pot semisynthesis of Exon1 of the Huntingtin protein: new tools for elucidating the role of post-translational modifications in the pathogenesis of Huntington’s disease. Angewandte Chem Int. Ed. Engl. 2014, 10;53(7):1928-33.